

Development of regenerative immunotherapy with induced pluripotent stem cell technology

Shin KANEKO, M.D., Ph.D.

Laboratory of Cancer Immunotherapy Research, School of Medicine, University of Tsukuba Shin Kaneko Laboratory, Center for iPS cell Research and Application (CiRA), Kyoto University

Regeneration gives youth and clonality to anti-cancer immune cells

• antigen receptor modification

Conceptual image of regenerative T cell immunotherapy from Minagawa A et al., *Cell Stem Cell* 2018

2D differentiation of human PSCs generates TCR-expressing immune cells that resemble peripheral T or ILC/NK

The right iPSC-immune cell in the right place at clinical setting

Direct and multiple injections to localized tumor site										
	iPSC- derived	Receptor modification	NK receptors	Homing to tumor site	Persistency (survival in vivo)	Injection	GVHD risk			
	NK	CAR	present	Poor	Relatively short	Local	No - Less			
	CD8 αβ T	TCR CAR	absent	Better	Relatively long	Systemic	Possible			
Intravenous and multiple systemic injections to remote and disseminated tumor site + \downarrow										

Ueda T., unpublished data

HLA-homozygous allogeneic iPSCs for clinical development of immunotherapy

Currently available iPSCs distributed by CiRA Foundation

HLA Haplotype identical	Peripheral Blood	Cord Blood	
1 st frequent 17% of JPN	1 released (4 clones)	2 released (5+4 clones	
2 nd frequent 9% of JPN	1 released (4 clones)	1 released (4 clones)	
3 rd frequent 8% of JPN	1 released (5 clones)		
4 th frequent 5% of JPN	1 released (1 clones)		

Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility

Huaigeng Xu,^{1,3} Bo Wang,^{1,3} Miyuki Ono,^{1,2} Akihiro Kagita,¹ Misato Nishikawa,¹ Masaki Nomura,¹ Fumiyo Kitaoka,¹ Toi Shin Kaneko,^{1,*} and Akitsu Hotta^{1,2,4,*}

Cell Stem Cell, 2019

7 iPSC lines may cover most of the global population

Utilizing anti-GPC3 iCAR-ILC/NK for treatment of ovarian cancer patients

Clinical Cell Production (1) CAR-transduced iPSC Master Cell Bank Generation

Clinical Cell Production (2) GMP-processing for anti-GPC3 iCAR-ILC/NK induction

Manufacturing strategy

Ueda T et al., Cancer Science, 2020

CAR-dependent and -independent iCAR-ILC/NK effector functions contributed to therapeutic effects

Non-clinical safety test (1): in vivo acute toxicity test of iCAR-ILC/NK

in vivo toxicity test

schedule ٠

0 3 7 10 14 17 21 (days)

1.0 x10⁷ i.p. x 6 times x 12 \bigcirc NSG mice

general status and lab data

iCAR-ILC/NK 🗘 🔾

- No body weight change to control ٠
- No laboratory data change to control
- histology @ day 21 ٠
 - No organ weight change to control ٠
 - Infiltrated human cells to omentum around • stomach(4), spleen(4), and pancreas(2) in 12 mice

omentum

anti-numan nuclear Ab staining

HE staining

test items

Lab data 🔵		Organs for histology				
AST	RBC		Cerebrum	Bronchs	Gall bladder	
ALT	HGB		Cerebellum	Lung	Pancreas	
LDH	HCT		Spinal code	Tongue	Kidney	
ALP	MCV		Sciatic nerve	Esophagus	Bladder	
T-CHO	MCH		Eyes	Stomach	Ovary	
TG	MCHC		Optic nerve	Duodenum	Uterus	
PL	Retic		Herder grand	Jejunum	Vagina	
T-BIL	PLT		Pituitary	lleum	Mammal grand	
GLU	WBC		Thyroid	Cecum	Sternum	
BUN			Parathyroid	Colon	Femoral bone	
CRE			Adrenal grand	Rectum	Femoral muscle	
TP			Spleen	Submandibular grand	Skin	
ALB			Heart	Sublingual grand	Thymus	
A/G			Aorta	Liver	Lymph nodes	

Organs in bold letter were weighed at sacrifice

Ueda T et al., Cancer Science, 2020

Summary

- CD8αβ cytotoxic T cells and NK cells were induced from HLAhomozygous allogenic iPS cells in a clinically relevant manipulation protocol; both are thought to be candidates of an immune-cell therapy platform.
- Anti-GPC3 iCAR-ILC/NK produced by a clinically relevant manipulation protocol showed therapeutic efficacy and safety in non-clinical tests using an animal model
- Preparation for a clinical trial targeting GPC3-expressing ovarian cancer by the iCAR-ILC/NK is ongoing.

Acknowledgements

- <u>CiRA, Kyoto Univ.</u>
 - Shinya Yamanaka
 - Akitsu Hotta
 - Akira Watanabe
 - Masayoshi Tsukahara
 - Facility for iPSC Therapy
 - Shoichi Iriguchi
 - Tatsuki Ueda
 - Atsutaka Minagawa
 - Yohei Kawai
 - Wang Bo
 - Aki Sasaki
 - Ayako Kumagai
 - Kengo Nakagoshi
 - Kazuki Nakane
 - Yuhi Kumakiri
 - and all staffs of Kaneko Laboratory

- Nat. Cancer Center
 - Toshihiko Doi

٠

- Kenichi Harano
- Tetsuya Nakatsura
- Yasushi Uemura
- Junichiro Yuda
- Yukiko Ishiguro
- Miki Fukutani
- Hideki Furuya
- Nozomu Fuse
- Akihiro Sato
- <u>Yamaguchi Univ.</u>
 - Koji Tamada
- Ehime Pref. Univ.
 - Masaki Yasukawa

- <u>KIRIN holdings</u>
 - Izumi Ihara
 - Hiroaki Suzuki
 - Munenkimi Nanao
 - Hiroki Maruyama
 - Yoshie Tanikawa
 - Ryo Yakabe
 - and all staffs of KIRIN Kaneko project
- <u>AMED</u>

